Calculation Policy

Making Learning An Adventure

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. The policy has been devised with members of staff using the White Rose Maths Hub Calculation Policy with further material added and adapted. It is a working document and will be revised and amended as necessary

Age stage expectations: The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014 and the method(s) shown for each year group should be modelled to the vast majority of pupils.

However, it is vital that pupils are taught according to the pathway that they are currently working at and are showing to have 'mastered' a pathway before moving on to the next one. Of course, pupils who are showing to be secure in a skill can be challenged to the next pathway as necessary.

Choosing a calculation method: Before pupils opt for a written method, they should first consider these steps:

Can I do it in my head using a mental strategy?

Should I use a formal written method to work it out?

Addition- Reception Early learning goals:

Count reliably with numbers from 1 to 20, place them in order.

Say which number is one more than a given number.

Using quantities and objects, they add two single-digit numbers and count on to find the

Key Vocabulary:add, more, and make,sum, total altogetherscore double one more,two more, ten more...

how many more to

Objective &	Concrete	Pictorial	Abstract
Strategy Recognise numbers up to 20 and understand the meaning of each number by recognising and knowing their clusters	Children use everyday objects and resources to represent each number up to 20. For example: 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Children are shown different visual representations and recognise what number it represents	Children are shown a digit and understand what this means e.g. 2
Count on in ones and say which number is one more or less than a given number	Children physically move themselves along the numbers e.g. jump or walk 1 2 3 4 5 6 7 13 12 11 10 9 8 14 15 16 17 18 19 20 Children use everyday objects, count them out and physically add one more or take one away (one less)	Children use a number line or number track to 20 and count along it forwards or backwards	1,2,3,4,5 One more than 2 is 3 2 + 1 = 3 One less than 4 is 3 4 - 1 = 3
Relate addition to combining two groups of	Children physically use concrete resources and manipulatives and add 2 groups together.	Children see or draw a visual representation to add the two groups together	The written form is used $2 + 3 = 5$

answer

Addition Year 1 statutory requirements:

Count to and across 100, forwards beginning with 0 or 1, or from any given number.

Given a number, identify one more.

Read, write and interpret mathematical statements involving addition (+), and equals (=) signs.

Represent and use number bonds and related subtraction facts within 20 Add one-digit and two-digit numbers to 20, including zero.

□ Solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems.

<u>Key Vocabulary:</u>
+, add, more, plus,
make, sum, total
altogether score double,
near double one more,
two more ten more
how many more to
maka 2 Haw many

Objective & Strategy	Concrete	Pictorial	Abstract
Identify and represent numbers using objects and pictorial representations (multiple representations)	Children use equipment and everyday objects to make and represent a number	Children draw different representations of a number	5

Represent & use number bonds and related subtraction facts within 20	Children use practical equipment on a tens frame to represent the bonds	Children see and draw images in a tens frame and part whole model to find number bonds and related facts	$\begin{array}{c} 10\\ \hline 10\\ \hline 6\\ 4 \end{array} = 10\\ \hline 10\\ \hline 6\\ 4 \end{array}$ $\begin{array}{c} 6+4=10\\ 4+6=10\\ 10-4=6\\ 10-6=4\\ \hline 10-6=4\\ \hline \\ 1 \end{array}$ $\begin{array}{c} 1 \text{ more than 5 is equal to 6.'}\\ 2 \text{ more than 5 is 7.'}\\ 8 \text{ is 3 more than 5.'} \end{array}$
Combine two parts to make a whole	Children will use lots of different resources such as Numicon, counters, eggs, shells, teddy bears and everyday objects	Children will use and draw pictures in a to add together 2 numbers as a group or in a bar	Digits will be used 4 + 3 = 7 (four is a part, 3 is a part and the whole is seven) 7 4 3
Use concrete resources and a number line to support the addition of numbers. Know	A number line alongside equipment is used	A bar model is used which encourages the children to count on	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4? What's the total of 4 and 2? 4 + 2

- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers adding three one-digit numbers.

Solve problems with addition including those involving numbers, quantities and

measure

Objective & Concrete Pictorial Abstract

make...? How many

Strategy			
Add multiples of 10	Model using dienes and bead strings	Use representations for base ten. 3 tens + 5 tens = tens 30 + 50 =	20 + 30 = 70 = 50 + 20 $40 + \Box = 60$
Use known number facts Part part whole	Children explore ways of making numbers within 20	Along side of this they use equipment 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	+ 1 = 16 $16 - 1 =1 + = 16 $ $16 - = 1$
Using known facts	Use every day items and base ten /// + /// =////// \$\$\$\$+ \$\$\$\$ =\$\$\$\$\$\$\$\$ 	Children draw representations of H, T and O $\therefore + \div = \div$ (+) = + =	3 + 4 = 7 which leads to 30 + 40 = 70 which leads to 300 + 400 = 700 10 6 40
Add 2 digit number and ones	17 + 5 = 22 Use ten frame to make 'magic ten	Use part part whole and number line to model.	Children who are working at a greater depth, will use base ten and alongside this use a formal written method e.g.

	Children explore the pattern. 17 + 5 = 22 27 + 5 = 32	17 + 5 = 22 (3) (2) 16 + 7 +4 +4 +3 16 20 23	TensOnes2 3+ 9111Children use a bar model to represent a claculation e.g. 17 + $5 = 22$ 2217175They then explore the related facts $17 + 5 = 22$ 5 + 17 = 22 $22 - 17 = 5$ $22 - 5 = 17$
Add 2 digit number and ten	Explore that the ones digit don't change	Children draw number lines and add on jumps of ten	27 + 10 = 37 27 + 20 = 47
		27 + 30 +10 +10 +10 .27 37 47 57	$27 + \Box = 57$ Children who are working at a greater depth, will use base ten and alongside this use a formal written method e.g. $\boxed{\frac{\text{Tens} \text{Ones}}{1 \text{I} \text{I} $
Add two 2-digit numbers	Model using dienes , place value counters and numicon	Use number line and bridge ten using part whole if necessary. E.g. 47 + 25	Children who are working at a greater depth, will use base ten and alongside this use a formal written method e.g.
		47 67 72 47 67 70 72	-

	 +		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Add three 1-digit numbers	Use practical equipment. Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	Combine the two numbers that make/ bridge ten then add on the third. 4+7+6 = 10+7 = 17

AdditionYear 3 statutory requirements:
• Find 10 or 100 more than a given number.Key Vocabulary:
+, add, addition, more, plus
make, sum, total altogether
score double, near double one

more, two more... ten more...

one hundred more how many

more to make ...? How many

Recognise the place value of each digit in a three-digit number (hundreds, tens,

ones).

Add numbers with up to three digits, using formal written methods of columnar addition

Objective & Pictorial Concrete Abstract Strategy Column Model using base ten or Children move to drawing the 2 2 3 Addition-no numicon counters using a tens and one regrouping т 0 frame (friendly + 1 1 4 tens ones numbers) Add together the ones first, Add two or three 3 3 then the tens. 2 or 3digit numbers Tens Ones Add the ones first, then the tens, 45 then the hundreds 34 H 9 Move to using place value counters \odot 0 Calculation 0000 21 + 42 =21

Addition Year 4 statutory requirements:

Find 1000 more than a given number. Add numbers with up to 4 digits using the formal written methods of columnar addition where appropriate. Solve addition two-step problems in contexts, deciding which operations and

methods to use and why,

Key Vocabulary: add, addition, more, plus, increase sum, total, altogether score double, near double how many more to make...?

Consolidate learning from Year 3

Objective & Strategy	Concrete	Pictorial	Abstract
Add numbers with up to 4 digits	Children continue to use base ten or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	Draw representations using place value counters	Continue from previous work to carry hundreds as well as tens. Relate to money and measures

□Using quantities and objects, they subtract two single-digit numbers and count back to find the answer.

less, two less... ten less... How many fewer is...

Objective & Strategy	Concrete	Pictorial	Abstract
Count backwards in familiar contexts such as number rhymes or stories	10 Green Bottles sitting on the wall S little ducks went swimming one day S we day	Children draw the items themselves as they decrease	Children see the numbers represented 10,9,8,7,6,5,4,3,2,1
Relate subtraction to 'taking away' using concrete objects and role play	Three teddies take away two teddies leaves one teddy	Children count back along a number line to take away alongside equipment If I take away four shells there are six left	Children will be shown the calculation which will be read out loud 10 - 6 = ?

			
Say which number is one less than a given number using numbers to 20	Use equipment and remove one to find one less Children use large numbers and move backwards to find one less 123456 7 1312111098 14 151617181920	Children count back 1 along a number line -1 0 1 2 3 4 5 6 7 8 9 10	10 take away 1 is 1 less than 8 is 5 – 1 =
□ Represe □ Read, write □ Su	equals (=) sigr btract one-digit and two-digit num	than a given number. lated subtraction facts within 20. ments involving subtraction (-) and ns. lbers to 20, including zero.	One less, two less, ten
	e-step problems that involve subtr pictorial representations, and miss	action using concrete objects and sing number problems	
Objective & Strategy	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters , cubes etc to show how objects can be taken away	Cross out drawn objects to show what has been taken away	7—4 = 3 16—9 =7
		® ^{®®} ® ^{®®} ® ^{®®} ¶ ^{®®}	

Counting back	6-4=2 4-2=2 Move objects away from the	Count back in ones using a	Put 13 in your head, count back 4.
	Move objects away from the group, counting backwards Move the beads along the bead string as you count backwards.	$\begin{array}{r} \text{number line} \\ 15 - 7 = 8 \\ \hline \\ 8 9 10 11 12 13 14 (15) 16 17 18 19 20 \end{array}$	What number are you at? 13 - 4 = ?
Find the difference	Compare objects and amounts 7 'Seven is 3 more than four' 4 'I am 2 years older than my sister' Lay objects out in a bar model 5 Pencils 3 Erasers 7	Counting on using a using a number line to find the difference +4 •••••••••••••••••••••••••••••••••••	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister?
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition and the Part Part Whole model to model the inverse	Use pictorial representations to show the part.	Move to using numbers within the part whole model

	If 10 is the whole and 6 is one of the parts, what s the other part? 10-6 = 4		5 12 7
Make 10	14—9 Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5	13 - 7 = 6 Jump back 3 first, then another 4. Use ten as the stopping point. 13 - 7 13 - 7 = 6	16 – 8 = How many do we take off first to get to 10? How many left to take off?
Bar model	5 - 2 = 3	Children draw their own bar models	8 2 10 = 8 + 2 10 = 2 + 8 10-2 = 8 10-8 = 2

Subtraction Year 2 statutory requirements:

Recall and use subtraction facts to 20 fluently, and derive and use related facts to 100.

Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Key Vocabulary:

subtract, subtraction, take (away), minus, leave, how many are left/left over? one less, two less... ten less... one hundred less, How many fewer is... than...? Subtract numbers using concrete objects, pictorial representations, and mentally,

including:

a two-digit number and ones

a two-digit number and tens
two two-digit numbers

Objective & Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a Place Value chart to show how to change a ten into ten ones, use the term 'take and make' E.g. $20 - 4 = 16$	20 - 4 = 16	20 – 4 = 16
Partitioning to subtract without regrouping. 'Friendly numbers'	34—13 = 21 Use base ten to show how to partition the number when subtracting without regrouping	Children use representations of the base ten and cross off 43-21 = 22	34 -10 -3 20 1 Partition the number 34 into tens and ones. Partition 13 and subtract the ones and the tens. Place the partitioned number back together. They will also be shown this using an expanded column method e.g. 7 0 2 0 4 4 5 4
Make ten	34—28 Use a bead bar or bead strings to	Use a number line to count on to next ten and then the rest.	Begin by partitioning into tens and ones.

Subtraction Year 3 statutory requirement:

Find 10 or 100 less than a given number.

Recognise the place value of each digit in a three-digit number (hundreds, tens, ones).

Subtract numbers with up to three digits, using formal written methods of column subtraction.

Subtract numbers mentally, including: • A three-digit number and ones • A three-digit number and tens • A three-digit number and hundreds.

Key Vocabulary: subtract, subtraction, take (away), minus leave, how many are left/left over? one less, two less... ten less... one hundred less how many fewer is... than...? how much less is...? difference between half_halve

Objective & Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model E.g. 45 – 22 = Tens Ones	Draw representations to support understanding	47-24=23 $-\frac{40+7}{20+3}$ then 32 -12 20
Column subtraction with regrouping Note: The exchanged ten or hundred is just as important as any other number, therefore, it should be written as clear and as large as any other number, and placed at	Begin with base 10 or Numicon. Move to place value counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or Place Value counters and cross off. 45 76 76 76 76 76 76 76 76	Begin by partitioning into place value columns $\begin{array}{cccc} 6 & 0 & 1 & 4 & 4 & 0 & 0 & 1 & 30 \\ \hline 7 & 0 & 4 & & 5 & 0 & 0 & 3 & 7 \\ \hline 2 & 0 & 7 & & 2 & 0 & 0 & 5 & 0 & 4 \\ \hline 4 & 0 & 7 & = & 4 & 7 & 2 & 0 & 0 & 8 & 0 & 3 & = & 283 \end{array}$ Then move onto formal method

Subtraction Year 4 statutory requirements:

• Find 1000 less than a given number.

- Subtract numbers with up to four digits, using formal written methods of columnar subtraction where appropriate.
- Solve subtr

 Solve subtra 	action two-step problems in conte	exts, deciding which operations an	d
	methods to use an	id why.	
Objective &	Concrete	Pictorial	Abstract
Strategy			
Subtract with up	Model the process of	Children may draw base ten or	Expanded method
to 4 digits.	exchanging using Numicon,	Place Value counters and	60 14 400 130 7 0 4
Introduce	base ten and then move to	cross off.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
decimal	Place value counters		
subtraction			Then move onto formal short

subtract, subtraction, take (away), minus, decrease leave, how many are left/left over? Difference between half, halve

Key Vocabulary:

how many more/fewer is... than 2 How much more/less

Unito Iorrial Short compact method

through context of money		234	- 179	45 29 Tens Ones	6	4 5 ¹ 37
By the end of year 4,	0	0	•	16 ABOOL SAR SAR	74	254
pupils should be subtracting numbers up to 4 digits using	(iii)	000			47	283
compact column subtraction method.	9	00		10 + 6 = 10	3	4 digit numbers
					$-\frac{784^{1}2}{1829}$	-1562
					6013	1192

Key Vocabulary:

Double, twice, group, set, 2's, 5's, 10's, multiple

Multiplication Early Learning Goal:

□ They solve problems, including doubling, halving and sharing.

Objective &	Concrete	Pictorial	Abstract
Strategy			
Use pictorial representations and concrete resources to double numbers to 10.	Use practical activities using manipulatives such as Numicon to double a number	Draw pictures to show an item has doubled e.g. ladybirds spots 1+1=2 $2+2=4$ $3+3=6$ $4+4=8$	2 + 2 = 4 Double 3 equals 6
Use concrete sources, role play, stories and songs to begin counting in twos, fives and tens.	Use everyday items and objects to count in 2's, 5's and 10's Counting in 2's	Use a number line alongside the objects	0, 2,?, 6, 8, ?

	Counting in 5's Counting in 10's	+ + + + + + + + + + → O 5 10 15 20 25 30 35 40 45 50	
□Solve one-	iplication Year 1 Stan step problems involving multiplication sts, pictorial representations and arr	on by calculating the answer using	
Objective & Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives such as Numicon to double and halve a number	Draw pictures to show a number has doubled Double 4 is 8	Partition a number and then double each part before recombining it back together. 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10 10 12 12 = 32
Counting in	Count the groups as children are	Children make representations to	Count in multiples of a number

multiples	skip counting, children may use their fingers as they are skip counting.	show counting in multiples.	aloud Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25 , 30
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw and make representations Draw \bigcirc to show 2 x 3 = 6	2 x 4 = 8
Repeated addition	Use different objects to add equal groups 3 + 3 + 3 3 + 3 + 3 2 + 2 + 2 + 2	Use pictures and drawings alongside number lines $3^{+3+3+3+3}$ $3^{+3+3+3+3}$ 15 $3^{+3+3+3+3}$ $5^{+}5 + 5, 3$ groups of 5, 5 + 5 + 5, 3 groups of 5, 5 + 5 + 5, 3 groups of 5, 5 + 5 + 5, 3 + 3, 5 Move on to a bar model for a more structured approach e.g. 3 + 3 + 3 + 3, 5	Write addition sentences to describe the pictures and objects 2+2+2+2 + 2 = 10

Multiplication Year 2 statutory requirement:

Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers. Calculate mathematical statements for multiplication and division within the

multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs.

□ Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.

□ Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including

_	problems in contexts.						
	bjective & Strategy	Concrete	Pictorial	Abstract			
	Doubling	Model doubling using base ten and place value counters E.g. double 26	Draw pictures and representations to show how to double numbers	Partition each number and then double each part before recombining it back together			

Key Vocabulary:

lots of, groups of, x, times, multiply, multiplied by multiple of once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array

Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	40 + 12 = 52 Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models $5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	16 10 6 20 4 12 $= 32$ Write sequences with multiples of numbers. 0, 2, 4, 6, 8, 10 0, 3, 6, 9, 12, 15 0, 5, 10, 15, 20, 25, 30 1, 3, 5, 7, 9, 11 1, 6, 11, 16, 21
Multiplication is commutative	Create arrays using counters, cubes and Numicon	Children draw their own arrays 3 x 4 (3 four times)	Children to be able to use an array to write a range of calculations e.g. 00000 5+5+5=15 3+3+3+3+3=15 $5 \times 3 = 15$ $3 \times 5 = 15$

	does not affect the answer. 3 x 4 (3 four times) 4 x 3 (4 three times)		
		4 x 3 (4 three times)	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.	e.g. 4 x 2 = 8 and 2 x 4 = 8 $8 \div 2 = 4$ $8 \div 4 = 2$ 8 divided into groups of 2 = 4 8 divided into groups of 4 = 2	Children draw and complete fact families $ \begin{array}{c} $	$2 \times 4 = 8$ $4 \times 2 = 8$ $8 \div 2 = 4$ $8 \div 4 = 2$ $8 = 2 \times 4$ $8 = 4 \times 2$ $2 = 8 \div 4$ $4 = 8 \div 2$ Show all 8 related fact family sentences Very important that the children see and use the = sign at the start of a calculation

Multiplication Year 3 statutory requirements:

Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.

Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.
 Solve problems, including missing number problems, involving multiplication including positive integer scaling problems and correspondence problems in which n

lots of, groups of x, times, multiply, multiplication, multiplied by, multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so

Key Vocabulary:

Objective & Concrete **Pictorial** Abstract Strategy Multiply 2 digit by 1 Show the links with arrays to first Children can represent their What calculation is digit introduce the grid method work with place value counters represented? (No exchange) in a way that they understand. They can draw the counters 00 using colours to show different 00 10 10 4 rows of 10, 4 rows of 3 amounts or just use the circles Then move onto base ten and in the different columns to place value counters E.g. 21 x 3 show their thinking as shown below. 0 Ones Tens 0 0 ٩ 6 60 3 = 63E.g. 34 x 2

objects are connected to m objects.

multiply two Solve prot to multip	e value, known and derived facts to mu o-digit and three-digit numbers by a on layout. olems involving multiplying and adding oly two digit numbers by one digit, integ spondence problems such as n objects	e-digit number using formal writte , including using the distributive la ger scaling problems and harder	three times ten times times as (big, long, wide
Objective &	Concrete	Pictorial	Abstract
Strategy Grid method recap from year 3 for 2 digits x 1 digit and move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	E.g. 24 x 4 Start with base ten Total Step 1: Get 4 lots of 4, 4 lots of 20 Step 2: 4 x 4 = 16. Can I make an exchange? Yes I can take ten ones and make a ten Step 3: 4 x 2 tens plus my extra ten makes 9 Step 4: How many tens do I have? 90 How many ones do I have 6? Step 5: How many tens and ones do I have altogether? 9 tens add 6 ones = 96	Children to represent the counters/base 10, pictorially e.g. the image below	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $\boxed{\frac{x}{7}} \frac{30}{210} \frac{5}{35}$ $210 + 35 = 245$

Multiplication Year 4 statutory requirement:

□ Recall multiplication and division facts for multiplication tables up to 12 × 12

Key Vocabulary:

lots of, groups of times, multiply, multiplication, multiplied by, multiple of,

	Then move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows E.g. 245 x 4 H I OO O O O O O O O OO O O O O O O O O OO O O O O O O O O O		
	exchange? Yes I can take twenty ones and make 2 tens Step 3: 4 tens four times plus my extra 2 tens makes 18 tens (180) Step 4: How many tens do I have? 18. Can I make an exchange? Yes I can exchange 10 tens for 1 hundred which leaves me with 8 tens. Step 5: How many Hundreds do I have? 8 hundreds plus the extra hundred so 9 hundreds. Step 6: How many hundreds, tens and ones altogether? 900 + 8 + 0 = 980		
Column Multiplication (TO x O and HTO x O) It is important at this stage that they always multiply the ones first.	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping and then moving on to regrouping. $321 \times 2 =$ 642	Children to represent the counters/base 10, pictorially e.g. the image below	Two digit number H T 0 2 4 5 2 4 5 2 4 2 4 $30 + 6$ 36 x 4 24 x 24 144 4 24 144 144 Leading to a 3 digit number

	Hundreds Tens Ones		× 300 20 7 4 1200 80 28 Moving on to 327 3 2 7 × 4 3 2 7 × 4 3 2 7 × 4 3 2 7 × 4 3 0 8 1200 1 3 0 8 1308 Then 1 2 1
Divi	Sion Early learning goal		Share, split, divide, halve, half, groups, lots of
Objective & Strategy	Concrete	Pictorial	Abstract
Use pictorial representations and concrete resources to halve numbers to 10	Use practical activities using manipulatives such as cubes and Numicon to halve a number	Children draw representations which show halving (Splitting the amount into 2 equal groups)	Half of 6 is I had 10 biscuits and I ate half of them. How many are left?
Share quantities using practical resources, role play, stories and songs.	Role play example: It is the end of the party and the final two teddies are	Children draw representations which show sharing e.g. in the example below they shared 12 faces into 3 equal groups	12 shared between 3 people is

empty party b	barty bags. Provide ags and a small	
	ems such as gifts, es of cake. Ask the	
	the objects between vo bags.	

Division Year 1 statutory requirement:

solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support Key Vocabulary:

Division, ÷, divide, divided by, divided into, left, left over equal arouns half

	of the teacher.		
Objective & Strategy	Concrete	Pictorial	Abstract
Understand division as sharing using concrete resources.	I have 10 cubes, can you share them evenly between 2 groups?	Children use pictures or shapes to share quantities.	12 ÷ 4 = 3 Share 12 between 4

	10,	pirates!	
Use pictorial representations	Use practical activities using manipulatives such as cubes and	Children draw representations and use the halving mat to	Half of 12 is I had 18 biscuits and I ate half of
and concrete resources to halve numbers	counters to halve a number	show halving (Splitting the amount into 2 equal groups	them. How many are left?

Division Year 2 statutory requirement:

Recall and use division facts for 2, 5 and 10 multiplication tables. Calculate mathematical statements for multiplication and division within the multiplication tables and write then using the multiplication (x), division () and equals (=) signs.

Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in

contexts.

share, share equally, one each, two each, three

Key Vocabulary:

each... group, in pairs, threes... tens equal groups of ÷, divide, divided by, divided into

Objective & Strategy	Concrete	Pictorial	Abstract
Understand division as sharing using	I have 10 cubes, can you share them evenly between 2 groups?	Children use pictures or shapes to share quantities.	12 ÷ 4 = 3 Share 12 between 4

Division Year 3 statutory requirement:

Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables Write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods Solve problems, including missing number problems, involving division including positive integer scaling problems and correspondence problems in which n objects are connected to m objects. Key Vocabulary:

share, share equally, one each, two each, three each... group, in pairs, threes... tens, equal groups of ÷, divide, divided by, divided into

Objective & Strategy	Concrete	Pictorial	Abstract
Consolidate understanding of division as <u>grouping</u> using concrete resources.	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6 = 4$ $96 \div 3 = 32$	Children use numbered number lines to divide using grouping.	How many groups of 6 in 24? 24 ÷ 6 = 4
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc E.g. 15 ÷ 3 = 5	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $7 \times 4 = 28$ $4 \times 7 = 28$ $28 \div 7 = 4$ $28 \div 4 = 7$ $28 = 7 \times 4$ $28 = 4 \times 7$ $4 = 28 \div 7$ $7 = 28 \div 7$
Divide two digit number by one digit with no remainders	Children represent a calculation using base ten and then share the tens and ones e.g. 39 $\div 3 = 21$	Children will use a part whole model and draw in the tens and ones themselves They will also be shown how to use a number line:	Children use their division knowledge and calculate the answer to questions like: 96 ÷ 8 96 ÷ 3 96 ÷ 6

Division Year 4 statutory requirement:

Year 4 statutory requirement: Note - there isn't a statutory objective for division. However, Y4 statutory multiplication objectives are to (1) recall multiplication and division facts for multiplication tables up to 12 × 12 and (2) multiply two-digit and three-digit numbers by a one-digit number using formal written layout so we will build on the connections between multiplication and division. <u>Key Vocabulary:</u> share, share equally one each, two each, three each... group in pairs, threes... tens equal groups of divide, division, divided by, divided into,

Objective &	Concrete		And division. Pictorial	Abstract
Strategy				
2 digit number divided by 1 digit - Share into equal groups (no remainders) Children build on their knowledge of dividing a two-digit number by a one- digit number from Year 3 by sharing into equal groups.		how the groups art. IS ES	Children continue to draw their own diagrams with dots or circles to help them divide numbers into equal groups.	Limit numbers to NO remainders in the answer OR carried (each digit must be a multiple of the divisor). 3 2 3 9 6

